Prediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks

Authors

  • A. Aghajani Bazzazi Department of Mining Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran.
  • K. Ahangari Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • R. Bastami Department of Mining Engineering, Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Abstract:

The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (GEP), linear multivariate regression (LMR), and non-linear multivariate regression (NLMR) models. In all models, the ANFO value, number of detonators, Emolite value, hole number, hole length, hole diameter, burden, spacing, stemming, sub-drilling, specific gravity of rock, hardness, and uniaxial compressive strength are used as the input parameters. The ANN model results in the test stage indicating a higher correlation coefficient (0.954) and a lower root mean square error (973) compared to the other models. In addition, it has a better conformity with the real blasting costs in comparison with the other models. Although the ANNs method is regarded as one of the intelligent and powerful techniques in parameter prediction, its most important fault is its inability to provide mathematical equations for engineering operations. In contrast, the GEP model exhibits a reliable output by presenting a mathematical equation for BC prediction with a correlation coefficient of 0.933 and a root mean square error of 1088. Based on the sensitivity analysis, the spacing and ANFO values have the maximum and minimum effects on the BC function, respectively. The number of detonators, Emolite value, hole number, specific gravity, hardness, and rock uniaxial compressive strength have a positive correlation with BC, while the ANFO value, hole length, hole diameter, burden, spacing, stemming, and sub-drilling have a negative correlation with BC. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Rock Brittleness Prediction Using Geomechanical Properties of Hamekasi Limestone: Regression and Artificial Neural Networks Analysis

The cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. Therefore, this paper attempts to investigate the Hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. The freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. The geo mechanical properties and brittl...

full text

rock brittleness prediction using geomechanical properties of hamekasi limestone: regression and artificial neural networks analysis

the cold climate is a favorable parameter for the development of tension cracks and decrease of rock brittleness. therefore, this paper attempts to investigate the hamekasi porous limestone in order to predict the brittleness indices during freeze-thaw cycles. the freeze–thaw test was executed for one cycle including 16 h of freezing, and 8 h of thawing. the geo mechanical properties and brittl...

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Hourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks

In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  281- 300

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023